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Abstract
Latent space exploration offers a powerful lens for interpreting and improving the explainability of black-box
AI models. This paper introduces a visual interface based on 𝛽-Variational Autoencoders that enables users to
navigate latent spaces interactively. By employing tools like visual latent sliders and transformation pathways,
the interface demonstrates how latent dimensions can influence image representations, uncovering semantic
structure and disentangled features. Using the MedMNIST medical image dataset, we illustrate the potential of
this approach to bridge the gap between technical latent space analysis and intuitive understanding. Although
the focus is on presenting the methodology, this work sets the stage for integrating user interaction and metrics,
particularly in high-stakes domains such as medical imaging.
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1. Introduction

The rise of black-box machine learning models, particularly deep neural networks, has revolutionized
numerous domains, including healthcare [1, 2]. However, their opaque nature raises concerns about
trust, accountability, and decision reliability, particularly in high-stakes applications like medical
diagnosis and treatment planning. Explainable Artificial Intelligence (XAI) seeks to address these
challenges by providing mechanisms to interpret and understand model decisions [3, 4]. Within XAI,
methods focusing on latent space exploration have emerged as a promising avenue to bridge the gap
between complex model representations and human interpretability [5, 6].

Latent space, the compressed representation of data learned by models such as autoencoders and
generative networks, encodes rich semantic structures that can provide insight into the underlying
data distributions and decision pathways of models [7, 8]. In particular, 𝛽-Variational Autoencoders
(𝛽-VAEs) have demonstrated the ability to disentangle latent factors, offering interpretable dimensions
that align with meaningful attributes [6]. Despite these advances, effectively exploiting the latent space
for interpretability remains a challenge, especially in healthcare, where actionable insights are critical
[9].

Healthcare presents unique challenges and opportunities for XAI. Models trained on medical data
must provide not only accurate predictions, but also explanations that resonate with medical experts
[10]. Techniques such as counterfactual reasoning and prototype generation have shown promise in
this regard [11, 12], yet their potential is largely unexplored in the context of latent space navigation,
with some initial efforts beginning to address this challenge [13, 14]. A human-centered approach,
which incorporates user-driven exploration and visualization, can enhance the interpretability and
usability of AI systems [15, 16].
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In this work, we propose an interactive visual interface for latent space exploration and interpretation,
designed to complement existing XAI methods. Centered on 𝛽-VAEs, our work introduces an interactive
tool, based on grid visualization of latent pathways, to enable intuitive navigation of latent spaces. Using
this tool, users can identify significant latent dimensions, uncover semantic structures, and explore
counterfactuals. While our initial focus is methodological, we propose this visual interface as a step
toward human-centered AI applications in high-stakes domains like healthcare.

The remainder of this paper is organized as follows. Section 2 summarizes related work in XAI,
latent space exploration, and healthcare applications. Section 3 presents the proposed interface and its
key components. Section 4 discusses qualitative results using common benchmark datasets and the
MedMNIST dataset, and Section 5 concludes with a discussion of future directions.

2. Related Work

Explainable AI (XAI) has become a critical research area that aims to address the opacity of black-box
machine learning models. Early work focused on post hoc methods, such as saliency maps [17] and
feature importance scores [10], which provide local explanations for individual predictions. Although
these methods have been widely adopted, they often lack the semantic clarity needed for domain
experts, particularly in high-stakes applications such as healthcare care [9]. Recent advances emphasize
interactive and human-centered approaches to explainability, aligning model outputs with user mental
models [15].

Latent space representations, a cornerstone of representation learning, have opened new pathways
for interpretability. Techniques such as autoencoders [8, 7] and 𝛽-variational autoencoders (𝛽-VAE)
[6] enable compact and structured representations of high-dimensional data. These models have
demonstrated the potential to disentangle latent factors into interpretable dimensions, allowing users
to explore data semantics intuitively. Visualization techniques, such as t-SNE and UMAP, have further
facilitated latent space interpretation by projecting high-dimensional embeddings in lower dimensions
for human analysis [18, 19].

Counterfactual reasoning has emerged as a powerful tool within XAI, providing explanations by
presenting ”what-if” scenarios that clarify model decisions [11, 20]. This approach has been particularly
impactful in the healthcare domain [21]. From a Human-centered point of view, counterfactuals are
considered to be more intuitive and less cognitive demanding, as they align with the ways in which
humans produce explanations [22]. These methods often leverage latent space representations to
generate plausible counterfactuals that align with the data distribution. For instance, models like ABELE
[23] generate counterexamples in the latent space to explain classification outcomes. However, these
approaches are limited in their interactivity and do not fully leverage the exploratory potential of latent
dimensions.

Despite these advancements, there is a notable gap in integrating latent space navigation into inter-
active environments that supports explainability. While some initial efforts have explored interactive
latent space visualization, such as tools for multimodal data exploration and annotation [24, 25], these
works primarily focus on technical demonstrations and general-purpose applications. Furthermore, ex-
isting methods often overlook the human-centered design principles necessary for effective deployment
in critical domains like healthcare, producing examples that are impractical or inconsistent within the
domain [26, 21].

This work aims to address these gaps by proposing an interface that combines 𝛽-VAEs with inter-
active tools such as visual latent sliders and transformation pathways. Our approach emphasizes the
interpretability of latent dimensions and their semantic contributions to model decisions, bridging the
divide between technical latent space analysis and practical user needs. By complementing existing
methods and integrating human-centered design principles, we provide a foundation for explainability
models that are both robust and user-friendly.



3. Methodology

3.1. Overview

The latent space of an autoencoder is a high-dimensional representation that encodes the structure
and semantics of the input data. However, these latent dimensions are inherently semantically opaque,
making their interpretation and use for explainability challenging. In this work, we propose an
interactive interface that empowers users to navigate and interpret the latent space through visual
exploration and intuitive interactions.

The key idea is to allow users to navigate through the latent dimensions using a visual tool and
observe the corresponding changes in the generated images. The latent space is discretized into a grid
of regular points. The granularity of the grid can be adjusted to obtain the desired level of detail.

This enables users to discover the semantic properties encoded in the latent features without requiring
explicit labelling or understanding of these dimensions. The process is depicted in Figure 2. To illustrate
the potential of this approach, we introduce the ”Identikit Game,” an engaging visualization strategy
that allows users to iteratively transform an image into a target by exploring the latent space.

3.2. Latent Space Navigation and Visualization

To facilitate the exploration of latent space, we developed a visual interface where users can interact
with each latent dimension through a grid of images. Each line of the grid adjusts a specific latent
feature, and the corresponding changes in the generated image are displayed in real time. By clicking on
an image, users can intuitively explore the relationships between latent dimensions and their semantic
effects on the target.

Figure 1: From an initial image, the user can get to the target image, in orange, by moving along the grid.

We employ disentangled representations learned by 𝛽-VAEs to ensure that each latent dimension
captures an independent feature, minimizing overlap between factors. This disentanglement is critical
for enabling meaningful interactions, as changes in one dimension do not inadvertently affect others.

3.3. The Identikit Game: An Interactive Approach

The ”Identikit Game” is a user-centric approach designed to make latent space exploration both intuitive
and engaging. Users are presented with a starting image 𝑋 and a target image 𝑌. The objective is to
iteratively adjust the latent dimensions to transform 𝑋 into 𝑌 by exploring the latent space.

The Identikit Game is designed to enable users to dynamically and interactively explore latent spaces
by navigating through its coordinate axes. In this game, the user begins with an initial image, which is
represented by a latent vector in a high-dimensional latent space. This latent space is typically structured
such that each axis represents a specific latent dimension learned by the model, each encoding a distinct
feature or property of the input data.



Figure 2: An example of the interface with the MNIST dataset. On the bottom, the single image shows the
reconstructed element of the point resulting from the grid selection. The grid on the top shows the reconstructed
images of the regular points of the latent space. In this example, the user can navigate from the number 8 to
the number 5 by selecting first an image as close as possible to the target one, highlighted in the red box, that
resembles the number 5. In the second step, the number of candidate images for number 5 is larger, and the user
can choose those that are closer to the internal representation.

The user interacts with the game by selecting a starting point in this latent space, corresponding to a
specific latent vector that generates the initial image. From this point, the user can move along any of
the axes in the latent space, making discrete steps toward a new point. As the user adjusts the latent
vector along these axes, the corresponding image is updated in real-time, providing immediate visual
feedback.

The core idea of the game is that the user explores different latent dimensions and sees in advance
how changes in those dimensions affect the generated image. For example, if the user selects an axis
associated with the ”smiling” feature, they will observe how moving along that axis influences the smile
of a face in the image. The user can choose to follow any latent axis that interests them and adjust the
vector step by step, observing how each movement transforms the image.

At each step, the game allows the user to see a preview of the reconstructed image they are about to
reach by adjusting the latent vector along the selected axis. This step-wise movement makes it easy
for the user to explore different regions of the latent space without being overwhelmed by the high
dimensionality. They can iterate through multiple dimensions and move from one point to another,
following various axes as they try to understand the structure and properties of the latent space.

The interactive nature of the game provides a rich, engaging experience where the user gradually
fine-tunes the image, refining their exploration of the latent space. The ultimate goal is to transform
the initial image into a target image by manipulating the latent space dimensions, step by step. Users
can continue to adjust their movement, following different paths along the axes, until they are satisfied
with the generated image.

This iterative process not only helps users understand the latent structure encoded in the model
but also encourages a deep connection between the user’s intuitive understanding of features and the
underlying latent space representation. Through this hands-on interaction, users can uncover complex,
abstract patterns within the data, exploring how the model encodes and decodes meaningful features
dynamically.

3.4. Human-Centered AI: Concepts over Features

In the context of explainable AI, an important distinction lies between semantic concepts that are
explicitly defined –such as colors, shapes, or sizes– and the concepts that are deeply rooted in the
human mind, which emerge from lived experiences and cognitive processes. Explicit semantic concepts
are generally well-defined and universally agreed upon, allowing for clear boundaries and easily
interpretable representations. For example, the color red, the shape of a circle, or the size of an object
can be classified in a consistent and measurable way, making them suitable for many traditional machine-
learning tasks that rely on supervised learning. These concepts can be directly mapped to distinct
features and labels, making them ideal for applications where clear definitions are necessary.



On the other hand, concepts planted in the human mind are often more abstract and context-
dependent, arising from an individual’s unique experiences, cultural background, and sensory inter-
actions with the world. These concepts are less tangible and harder to define, as they often overlap
with emotions, memories, or social constructs. For instance, the concept of beauty or danger is not
universally defined and can be influenced by a variety of factors, including personal experiences, societal
norms, and emotional responses. In high-stakes scenarios like healthcare, where concepts such as the
severity of disease or treatment efficacy depend on the clinician’s experience and the quality of the
available data, relying on implicit, individual interpretations of latent features can empower clinicians
to make more informed decisions without being constrained by predefined labels or categories. This
approach encourages a more nuanced understanding, where the clinician can interpret complex data
representations based on their expertise and situational context, rather than being confined to rigid,
pre-determined categories.

This distinction becomes crucial in our work, which aims to allow for the exploration of latent spaces
without explicitly defining or categorizing these concepts. By leaving the visualization of latent features
to the human mind, we avoid the complex task of disentangling and assigning labels to concepts that
might be ambiguous or too subjective. Unlike supervised machine learning methods that require clear
definitions and annotations, our approach encourages the user to navigate the latent space in a way that
aligns with their individual understanding. Users rely on their capacity to intuitively grasp complex,
context-dependent features without needing pre-existing labels. This method allows us to sidestep
the challenges associated with defining and labeling latent dimensions that may represent abstract or
multifaceted concepts, which are often difficult to separate or interpret within a fixed framework.

A core strength of this methodology lies in its alignment with human-centered AI principles, which
mirror human reasoning [27, 28]. Latent features, while semantically opaque, can be understood by
humans through interaction and observation. By engaging with the latent space, users can detect
patterns, correlations, and features that are meaningful to them without needing explicit labels or
predefined categories. For instance, a user exploring the latent space of facial images might identify a
latent dimension associated with ”smiling” simply by observing the transformation of images on the
grid. The key is that users work with concepts—abstract, human-recognizable patterns—rather than
technical features, making the exploration accessible and intuitive. Interactive methods further enhance
this process by allowing users to iteratively refine their understanding of patterns in the latent space,
reinforcing the intuitive connection to human-recognizable concepts [29].

In this way, the methodology empowers users to discover meaningful semantic structures, enabling
them to interpret latent representations in a flexible, dynamic manner that is aligned with their cognitive
processes and expertise. Unlike traditional models that impose predefined semantic frameworks, our
approach fosters a more personalized interaction with the latent space, making the system more
adaptable and interpretable for diverse users, including clinicians in healthcare or experts in other
high-stakes fields.

3.5. Applications in Explainable AI

Our tool has several applications in the field of Explainable AI (XAI): Counterfactual explanations
enable users to generate counterfactual examples by manipulating latent dimensions, allowing them to
observe how minimal changes in the latent space lead to significant changes in the output. For example,
in a medical context, this might involve identifying the smallest change in latent space required to shift
a diagnosis from ”benign” to ”malignant.” Similarly, exploring clusters in the latent space facilitates
prototype generation, where users can identify representative examples for specific classes or categories.
Moreover, interactive exploration helps uncover biases in the latent space, such as dimensions encoding
socially sensitive attributes, thereby enabling corrective actions to be taken.



3.6. Benefits of Interactive Exploration

To create a more effective human-centred solution, it is essential to incorporate interactivity into the
design of explanation interfaces, as users’ interactions extend beyond simply receiving an XAI output
and persist until a meaningful understanding is reached [30, 31, 32]. Interactive latent space navigation
provides several advantages over traditional XAI methods: By involving users in the exploration
process, the methodology fosters a deeper understanding of model behavior[33]. Users can leverage
their personal pattern recognition abilities and intuition to make sense of complex latent spaces without
requiring technical expertise[29]. Eventually, The visual interface can be adapted to various datasets
and use cases, making it a versatile tool for XAI.

4. Experiments

4.1. Overview of Experiments

To evaluate the proposed tool, we conducted a series of experiments across multiple datasets, including
MNIST, Fashion MNIST, EMNIST, and MedMNIST. The experiments were designed to assess the
tool’s ability to support latent space exploration and improve explainability. Specifically, we investigated
the impact of different latent dimensions on usability, applied dimensionality reduction techniques
for visualization, and proposed metrics to determine the optimal latent dimension size for human
interaction.

4.2. Datasets and Experimental Setup

The datasets used in our experiments were selected to represent a wide range of data structures and
challenges, ensuring that our tool could handle different types of input data and provide meaningful
interpretations across various domains:

• MNIST and EMNIST: These datasets contain grayscale images of handwritten digits and letters,
respectively. MNIST is widely used in machine learning research and consists of 28x28 pixel
images of digits from 0 to 9. EMNIST extends MNIST to include letters from the English alphabet,
providing a larger set of classes with more varied intra-class variability. These datasets offer
relatively straightforward examples of image classification, making them ideal for testing basic
functionality of the tool.

• Fashion MNIST: This dataset consists of grayscale images of clothing items, such as t-shirts,
dresses, and shoes, in 28x28 pixel format. Fashion MNIST is more complex than MNIST due to
the high intra-class variability of the clothing items. This dataset was used to test how well the
tool can handle images with more diverse features and how the user can explore relationships
between latent dimensions related to clothing categories.

• MedMNIST: The MedMNIST dataset consists of medical images, both in grayscale and RGB,
relevant for clinical applications. This dataset includes categories such as skin lesions, chest X-
rays, and blood cell images. It is much more complex than the other datasets, involving data from
high-stakes domains like healthcare, where accurate interpretation of latent space representations
is critical. Using MedMNIST allowed us to test how well the tool supports the interpretability of
complex, domain-specific data in a high-stakes context.

For each dataset, we trained a 𝛽-VAE with varying latent dimensions (𝑑 = 4, 8, 16, 32, 64), ensuring
a balance between complexity and interpretability. For RGB datasets, where ideal latent dimensions
are numerous, we implemented a ranking mechanism to select and display only the most semantically
significant dimensions.



Figure 3: Images from MedMNIST dataset of blood cells. Each row displays a sequence showing gradual
changes in the appearance of a cell in the latent space.

4.3. Ranking Latent Dimensions

One of the main challenges when working with high-dimensional latent spaces is the cognitive load
required to navigate and understand the vast amount of information encoded across multiple dimensions.
To reduce this cognitive burden, we focus on selecting only the most informative latent dimensions,
which capture the most significant features of the data. By limiting the number of latent dimensions
involved in the exploration, we make the process more manageable and intuitive for the user.

In particular, we prioritize latent dimensions that exhibit high variance as they tend to encode
more meaningful and diverse variations in the data. Dimensions with low variance often contain less
useful information and may only represent noise or insignificant fluctuations. By focusing on the most
informative dimensions, we allow users to explore the most relevant and semantically rich parts of the
latent space, thus enhancing interpretability and reducing unnecessary complexity.

We use a ranking method based on the Structural Similarity Index Measure (SSIM) to achieve this.
Specifically, we generate two images for each latent dimension by decoding latent vectors with the
dimension set to its extreme values: −3 and 3. Such value limits are selected because they encompass
most of the latent space’s meaningful variations. As the latent dimensions in 𝛽-VAE models are typically
assumed to follow a Gaussian distribution, setting the boundaries to −3 and 3 ensures we focus on the
latent space’s most relevant and stable parts. This approach helps avoid exploring extreme values that
may result in unrealistic or irrelevant image reconstructions, as these regions often correspond to noise
or outliers.

Once the two extreme images for each latent dimension are generated, we compute the SSIM between
them. The SSIM measure evaluates the image’s perceptual similarity, which reflects the degree of
variation introduced by adjusting a particular latent dimension. A higher SSIM value indicates that
the two images are similar, suggesting that the dimension does not introduce significant changes. In
contrast, a lower SSIM value suggests that the dimension generates noticeable differences in the images,
revealing a dimension that captures meaningful semantic variation in the data.

These SSIM values are then used to rank the latent dimensions. Dimensions that introduce more
variation—those with lower SSIM values—are prioritized for user interaction, as they are more likely to
provide insightful and semantically rich transformations. By focusing on these ranked dimensions, we
ensure that users engage with the most informative and semantically relevant features of the latent
space, making the exploration both effective and efficient.



4.4. Dimensionality Reduction and Trajectory Analysis

To better analyze and interpret the high-dimensional latent space, we applied Uniform Manifold
Approximation and Projection (UMAP), a popular dimensionality reduction technique. UMAP is
particularly effective in preserving the local structure of the data, making it an ideal tool for visualizing
and understanding complex relationships in the latent space. By projecting the latent representations
into a 2D space, UMAP simplifies the analysis of the high-dimensional data, revealing patterns and
clusters that would otherwise be difficult to identify.

One of the key advantages of using UMAP for dimensionality reduction is its ability to uncover
natural clusters within the latent space. In datasets such as MNIST, Fashion MNIST, or MedMNIST,
UMAP often reveals clusters that correspond to distinct categories, such as different digits or types of
clothing. These clusters provide important insights into how the model organizes and encodes the data.
For instance, in the case of image datasets, we can visually observe how different categories are grouped
together in the latent space, highlighting areas where the model distinguishes between different classes.
This is valuable for understanding how the model perceives and organizes the features of the data.

UMAP also plays an important role in visualizing user interactions in the Identikit Game. As
users explore the latent space, their movements—adjusting the latent dimensions—can be traced and
represented as trajectories in the 2D space. These trajectories reflect the paths users take to move from
the starting image to the target image, providing a visual representation of how users are navigating
the latent space. The trajectory analysis reveals interesting patterns, such as frequent revisits to specific
regions or the types of areas in the latent space that users find more challenging to explore. This insight
is critical for improving the user interface and interaction design, as it helps pinpoint where users might
need additional guidance or where the latent space could be better structured for easier navigation.

Additionally, by measuring the distance traveled in the latent space during each step of the game, we
can assess how efficiently users are exploring the latent dimensions. The distance metric quantifies
how much the latent vector changes as users adjust it, providing a measure of the movement required
to get closer to the target image. This metric is useful for determining when the user has reached a
satisfactory transformation and when the game can be considered completed. By setting a threshold on
the distance traveled, we can stop the exploration once the user has made sufficient progress toward
the target image, improving the overall efficiency of the interaction.

The combination of UMAP-based dimensionality reduction and trajectory analysis allows for a more
intuitive understanding of the latent space. UMAP helps reduce the complexity of the data, making
it visually accessible, while trajectory analysis tracks how users move through this space, shedding
light on their interactions and decision-making processes. This fusion of techniques enhances the
interpretability of the latent space, allowing users to gain deeper insights into how the model encodes
and decodes the data.

In high-stakes domains like healthcare, this level of interpretability is essential. The ability to visualize
and understand how latent dimensions relate to different categories or outcomes can help clinicians
and other experts make more informed decisions. The use of UMAP and trajectory analysis thus not
only facilitates the exploration of latent spaces but also ensures that this exploration is meaningful,
guiding users toward relevant dimensions and interpretations.

4.5. Reverse Engineering Optimal Latent Dimensions

Another contribution of this work is the proposal of a human-centered metric to determine the optimal
number of latent dimensions. By evaluating user performance in the Identikit Game across different
latent dimension sizes, we can identify the configuration that maximizes usability and interpretability.
Specifically, the optimal latent space minimizes correlations among dimensions while preserving
semantic richness while, user performance averaged across domain experts, serves as the primary
metric. Higher performance indicates that the latent space is sufficiently expressive without being
overly complex.



Preliminary Observations. While human user studies are planned for future work, our experiments
yielded several preliminary insights:

• Latent Dimension Selection: The SSIM-based ranking effectively identified semantically
meaningful dimensions, as confirmed by qualitative analysis of the decoded images.

• Clustering in UMAP Space: The 2D projections consistently revealed distinct clusters corre-
sponding to different classes.

• Trajectory Analysis: The trajectories in the 2D space provided intuitive visualizations of user
interaction, allowing us to identify patterns such as frequent revisits to specific clusters or regions.

Experiments with human users, including medical professionals for the MedMNIST dataset, are
planned as part of a follow-up study. These studies will provide critical insights into the usability and
effectiveness of the interface in real-world scenarios. Additionally, we aim to refine the trajectory-based
metrics and integrate them into the game mechanics for automated feedback during interaction.

5. Conclusion and Future Work

In this work, we proposed an interactive visual interface for latent space exploration, integrating
human-guided navigation and visualization tools to improve explainability in black-box AI models. Our
results demonstrate the potential of the tool to make latent spaces more accessible and interpretable,
particularly through the Identikit Game and SSIM-based latent dimension ranking. By allowing users
to intuitively manipulate latent dimensions and observe their semantic impact, the interface bridges the
gap between technical latent space representations and human understanding.

The implications for explainable AI are significant, especially in medical contexts where trust and
accountability are paramount. The application of counterfactual reasoning within this interface offers
a powerful tool for generating actionable insights, enabling users to explore ”what-if” scenarios and
understand the decision pathways of models. Furthermore, integrating dimensionality reduction
techniques, such as UMAP, provides a complementary layer of interpretability by visualizing user
trajectories and latent space structure in a 2D plane.

While our interface is designed for intuitive interaction, its effectiveness has not yet been validated
through extensive user studies, particularly with domain experts in critical fields such as medicine.

Looking ahead, there are several promising directions for future research: Conducting User studies
with medical professionals and other domain experts to evaluate the interface’s usability and impact on
decision-making processes. We are also planning to improve the user interface to provide real-time
feedback, personalized interaction, and adaptive guidance based on user performance. Another goal
concerns the expansion of the interface to support a broader range of datasets, including multi-modal
and time-series data and to test its generalizability and robustness. More sophisticated metrics need to
be developed to quantify user interaction and latent space quality, enabling data-driven optimization of
the tool. Eventually, exploring the integration of AI-driven suggestions to guide users through latent
space navigation will improve efficiency and reduce cognitive load.

In conclusion, our work represents a step forward in human-centred AI, offering a novel approach to
exploring and interpreting latent spaces. By empowering users to interact with abstract, semantically
rich representations, we pave the way for more transparent, explainable, and trustworthy AI systems,
particularly in high-stakes domains like healthcare. We imagine that this visual interface will serve as a
foundation for future innovations in interactive explainability and human-AI collaboration.
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