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Abstract
AI embodiments take on a diversity of forms, effectively sustaining diverse contexts of use for mobile,
wearable, and ambient device users. This diversity enables a variety of interactions with AI systems and
devices as well as heterogeneous user experiences, from the scale of a tiny wearable device to that of a
large smart building, which are notably different in their nature and complexity. This paper presents an
overview of possible scales of interaction and user experience, abstracted through Kuniavsky’s hierarchy,
and discusses implications of how the explanator level, from Schwalbe and Finzel’s taxonomy of XAI,
should adapt in terms of output and interactivity to users engaging with AI at various physical scales.
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1. Introduction

AI embodies a wide range of form factors, from the personalized recommendations offered by
a video streaming application on a TV [1] to the thematically relevant suggestions provided
by a writing assistant on a desktop PC [2], customized navigation cues delivered through a
mobile device [3], and the context-aware guidance offered by a personal assistant that is always
available via the voice interface of a tiny device worn at the wrist [4]. Recent consumer gadgets,
such as Bee,1 Limitless,2 and AI Pin,3 provide always-available access to AI assistance through
their inconspicuous form factors—for example, “Bee sits quietly in the background, learning
your patterns, preferences and relationships over time, building a deeper understanding of
your world without demanding your attention.”1 Beyond personal devices, AI is increasingly
integrated into our everyday living environments, transforming them into smart spaces that
incorporate a heterogeneity of interactive devices [5] and evoking a sense of ambient-distributed
intelligence [6]. Moreover, beyond fixed environments, AI permeates larger spaces, addressing
smart mobility, smart buildings, and smart cities. These varied forms of presence and form
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Figure 1: An ambient intelligence environment featuring smart lighting, sound, and airflow installations,
which are directly controllable through a user interface available on a mobile or wearable device, but
which can also serve as novel modalities for implementing explainability in a way that is characteristic
to the specific scale of interaction and experience enabled by the environment.

factors make engaging with AI an incredibly versatile experience in our lives, from the tiniest
wearable devices to the largest urban spaces.

In this context, we argue that the scale of the experience when engaging with AI in various
forms necessitates adaptations to existing explainability techniques, making XAI inherently
dependent on the scale at which interactions between users and AI may take place. For exam-
ple, explainability delivered through a small wrist wearable, a public interactive display, or a
smart building is likely to take different forms in terms of output modalities and the level of
interactivity expected from the user. The smart environment illustrated in Figure 1 reveals a
variety of opportunities for interaction, ranging from personal devices to natural modalities, and
correspondingly, offers different ways for an explanator to engage with users through ambient
media [7] and augmented reality media [8], respectively. The specific embodiment of AI and the
interactive experience it evokes are thus crucial to effective explainability and, consequently, to
end-user trust that the AI is making sound decisions. In this context, explainability implemented



for smart chairs [9] could adopt the output modalities that smart chairs would naturally support,
such as actuation of their constituent parts [10]; explainability implemented for a smart room
could adopt subtle displays of light and sound [7]; whereas explainability implemented for an
wearable delivering electrical muscle stimulation [11] would use body pose and movement.

This position paper represents a preliminary exploration into the relationship between the
scale of user experience and interaction and the necessary qualities of an explanator that would
align with that experience. It argues that specific AI embodiments necessitate specific modalities
to implement explainability in ways that would not break, but rather amplify and augment the
user experience of engaging with the AI.

2. Scales of User Experience and Interaction and Implications for
AI Explainability

Following Schwalbe and Finzel’s [12] taxonomy for XAI, the high-level overview for building
an explanation system involves the following three levels:

• The Problem Definition level encompasses the traits of the task (task type, such as classifi-
cation, clustering, regression, etc., and input data types, such as symbolic or non-symbolic
data) and the level of interpretability of the explanandum (i.e., what is to be explained).

• At the Explanator level, functionally is divided into input (required inputs, degree of
portability to other input types, explanation locality), output (object of explanation,
output type, and presentation aspects), interactivity with the user, and any further formal
constraints posed on the explanator (such as the number of iterations).

• The Metrics level considers the metrics that can be used to assess the quality of XAI meth-
ods according to subjective human evaluation, with categories represented by functionally-
grounded metrics (which are independent of human judgment), human-grounded metrics
(where subjective human judgment is required), and application-grounded metrics (repre-
senting full human-AI collaboration).

We also rely on Kuniavsky’s [13] hierarchy of user experience scales relevant for ambient
intelligence systems and interactions, which encompasses six distinct scales—Covert, Mobile,
Personal, Environmental, Architectural, and Urban—as follows:

• At the Covert scale, characterized by interactions requiring a physical space on the order of
centimeters, the experience is entirely delivered through wearable devices in close contact
with the user’s body. Examples include smartwatches, armbands, rings and devices for
finger augmentation [14] that feature specific input modalities based on voice, gesture,
motion, and proximity, as well as specific output modalities, such as haptics, due to their
closeness to the human body. This scale also includes clip-on consumer electronics, such
as lifelogging devices [15], designed to operate independently and create digital records
of their users’ life experiences.

• At the Mobile scale, characterized by physical interactions on the order of tens of cen-
timeters, the experience is delivered through smartphones, which represent the prevalent
form of mobile computing today.



• At the Personal scale, characterized by a range on the order of one meter, the experience
is delivered by systems and devices of a person-sized magnitude, such as public terminals
and interactive kiosks. This scale involves interactions involving different and more parts
of the body [16, 17] and, possibly, assisted interaction [18].

• At the Environmental scale, the experience occurs at the order of tens of meters and takes
place at the level of a room. The experience usually involves more users, and potentially
many, as in the case of mass-computer interaction [19].

• At the Architectural scale, on the order of hundreds of meters, the experience involves an
entire building, combining elements of human-computer interaction, architecture, and
building information modeling, sensing, and actuation technologies [20].

• At the Urban scale, on the order of kilometers, the experience involves an entire city or
urban area, as in location-based mobile exergames [21] or location-based film experiences
in an augmented place [22].

The intersection between the Explanator level of XAI [12] and possible UX Scales in ambient
intelligence environments [13] is interesting to explore in how output and interactivity can be
tailored to match specific user interactions with various AI embodiments. From the smallest,
covert scale to the largest, urban scale, the way explanations are provided in terms of output
modalities must align with user expectations for those scales. For example, non-visual output
modalities, designed to minimize interference with user tasks, are preferable at the covert scale,
as is multimodal visual-audio output for smartphones on the mobile scale, aligning with mobile
content consumption paradigms. The personal scale may potentially involve more extensive
explanatory dialogues, using layered or step-by-step explanations and involving the location
of where the interactive system is installed. At the environmental scale, explanations should
be adapted to address multiple users, likely to be involved into the same interaction. At the
architectural scale, the explanations should consider the complexity of the built environment
and integrated devices. Lastly, at the urban scale, explanations should integrate the data that
becomes available from different sources involving various aspects of city life, such as living,
transportation, and cultural elements.

Matching explanations to the scale of interaction and experience is key to ensuring that
explanations are effective, well-received by users, and delivered through the most suitable
mechanisms. We are looking forward to both theoretical and practical explorations in this
direction, where adaptive XAI interfaces actively consider the scale of the experience created
by engaging with AI in various embodiments and form factors.
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